

Finite Automata
Part Two

Recap from Last Time

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton
that we will see in this course.

DFAs

● A DFA is defned relative to some
alphabet Σ.

● For each state in the DFA, there must be
exactly one transition defned for each
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

A language L is called a regular language
if there exists a DFA D such that (ℒ D) = L.

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Can have missing transitions or multiple
transitions defned on the same input
symbol.

● Accepts if any possible series of choices
leads to an accepting state.

Hello, NFA!

q2q2q2q2q1q1q0q0

start h i

h i

q0 q2q2q2q2

Hello, NFA!

q1q1q0

start h i

h i

q1q0q0 q2q2q2q2

Hello, NFA!

q1

start h i

h i

q1q0q0 q2q2q2q2

Hello, NFA!

q1

start h i

h i

q2q2q1q1q0q0 q2q2

Hello, NFA!

start h i

h i

q2q2q1q1q0q0 q2q2

Hello, NFA!

start h i

h i

q2q2q2q2

Tragedy in Paradise

q1q1q0q0

start h i

h i p

q0 q2q2q2q2

Tragedy in Paradise

q1q1q0

start h i

h i p

q1q0q0 q2q2q2q2

Tragedy in Paradise

q1

start h i

h i p

q1q0q0 q2q2q2q2

Tragedy in Paradise

q1

start h i

h i p

q2q2q1q1q0q0 q2q2

Tragedy in Paradise

start h i

h i p

q2q2q1q1q0q0 q2q2

Tragedy in Paradise

start h i

h i p

q2q2q1q1q0q0 q2

Tragedy in Paradise

start h i

h i p

q2q2q1q1q0q0

Tragedy in Paradise

start h i

h i p

NFA Languages

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

What is the language of this NFA?
(Assume Σ = {h, i}.)

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

What is the language of this NFA?
(Assume Σ = {h, i}.)

q2q2q1q1q0q0

start h i

NFA Languages

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

q1q1q0q0 q2q2q2

start 1 1 q2

 0, 1

Σ = {0, 1}

q0q0

start

 Σ

q0q0

start
q0

start

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0q0 q1

q4 q5

q2

q0q3

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0q3q3

q0q0 q1

q4 q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2
a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q4q0q3q3

q0q0 q1

q4 q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q5

q2
a

ε

a

b

b, ε b

a

ε

b a a b b

q4

q1

q4q0q3q3

q0q0 q1

q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

q5

q2
a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q1 q2

q4

q1

q4q0q3q3

q0q0

q5

q2

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

q5

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0 q2q1 q2

q4

q1

q4q0q3q3

q0

q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

q5

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0q3

q0q0 q2q1 q2

q4

q1

q4q3 q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

q5

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q4q0q3q3

q0q0 q2q1 q2

q4

q1

q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start

q5

a

ε

a

b

b, ε b

a

ε

b a a b b

q4 q5q4q0q3q3

q0q0 q2q1 q2q1

q5

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0q3 q5q4 q5q4q3

q0q0 q2q1 q2q1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

b a a b b

q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

b a a b b

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

● NFAs are not required to follow ε-transitions.
It's simply another option at the machine's
disposal.

Intuiting Nondeterminism

● Nondeterministic machines are a serious
departure from physical computers. How
can we build up an intuition for them?

● There are two particularly useful
frameworks for interpreting
nondeterminism:
● Perfect positive guessing
● Massive parallelism

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start
q₀ q₁ q₂a b

Σ

q₃a q₃

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₀ q₁ q₂a b

Σ

b a b

q₃a

a

q₃

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₁ q₂a b

Σ

b a b

q₃a

a

q₃

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₁ q₂a b

Σ

b a b

q₃a

a

q₃

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₁ q₂a b

Σ

b a b

q₃a

a

q₃

q₀ q₁

a b

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₂a b

Σ

b

q₃a

a

q₃

q₀ q₁

a b

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₂a b

Σ

b

q₃a

a

q₃

q₁ q₂q₀ q₁

a b

q₀ q₂ q₃

Perfect Positive Guessing

start

a

a b

Σ

b

q₃a

a

q₃

q₁ q₂q₀ q₁

a b

q₀ q₂ q₃

Perfect Positive Guessing

start

a

a b

Σ

b

q₃a

a

q₃

q₃q₃q₂q₁ q₂q₀ q₁

a b

q₀

Perfect Positive Guessing

start

a

a b

Σ

b

a

a

q₃

q₃q₃q₂q₁ q₂q₀ q₁

a b

q₀

Perfect Positive Guessing

start

a

a b

Σ

b

a

a

q₃

Perfect Positive Guessing

● We can view nondeterministic machines as
having Magic Superpowers that enable them
to guess choices that lead to an accepting state.
● If there is at least one choice that leads to an

accepting state, the machine will guess it.
● If there are no choices, the machine guesses any one

of the wrong guesses.
● There is no known way to physically model this

intuition of nondeterminism – this is quite a
departure from reality!

q₃q₃q₂q₁ q₂q₀ q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃q₃

We're in at least one
accepting state, so

there's some path that
gets us to an accepting

state.

We're in at least one
accepting state, so

there's some path that
gets us to an accepting

state.

q₀ q₃q₂q₁

Massive Parallelism

start

a

a b

Σ

b a b

a q₃q₀

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃q₃

We’re not in any
accepting state, so no
possible path accepts.

We’re not in any
accepting state, so no
possible path accepts.

Massive Parallelism

● An NFA can be thought of as a DFA that can be in many
states at once.

● At each point in time, when the NFA needs to follow a
transition, it tries all the options at the same time.

● (Here's a rigorous explanation about how this works; read
this on your own time).
● Start of in the set of all states formed by taking the start state

and including each state that can be reached by zero or more ε-
transitions.

● When you read a symbol a in a set of states S:
– Form the set S’ of states that can be reached by following a single a

transition from some state in S.
– Your new set of states is the set of states in S’, plus the states reachable

from S’ by following zero or more ε-transitions.

So What?

● Each intuition of nondeterminism is useful in a
diferent setting:
● Perfect guessing is a great way to think about how to

design a machine.
● Massive parallelism is a great way to test machines – and

has nice theoretical implications.
● Nondeterministic machines may not be feasible, but

they give a great basis for interesting questions:
● Can any problem that can be solved by a nondeterministic

machine be solved by a deterministic machine?
● Can any problem that can be solved by a nondeterministic

machine be solved eficiently by a deterministic machine?
● The answers vary from automaton to automaton.

Designing NFAs

Designing NFAs

● Embrace the nondeterminism!
● Good model: Guess-and-check:

● Is there some information that you'd really like to
have? Have the machine nondeterministically guess
that information.

● Then, have the machine deterministically check that
the choice was correct.

● The guess phase corresponds to trying lots of
diferent options.

● The check phase corresponds to fltering out
bad guesses or wrong options.

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

0

 1

1

 1

0

0 1

0

1

 0

1

start

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ

Nondeterministically guess when the
end of the string is coming up.

Deterministically check whether you
were correct.

Nondeterministically guess when the
end of the string is coming up.

Deterministically check whether you
were correct.

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a

b

c

a

b

a, b

c
 a

c

b

c

c

a
b

a, c

b, c

b

a

 Σstart

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

b, c

start

ε

ε

ε

Nondeterministically
guess which

character is missing.

Deterministically
check whether that
character is indeed

missing.

Nondeterministically
guess which

character is missing.

Deterministically
check whether that
character is indeed

missing.

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Just how powerful are NFAs?

NFAs and DFAs

● Any language that can be accepted by a
DFA can be accepted by an NFA.

● Why?
● Every DFA essentially already is an NFA!

● Question: Can any language accepted by
an NFA also be accepted by a DFA?

● Surprisingly, the answer is yes!

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

q0

q1

q2

q3

0 1

1

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

q0

q1

q2

q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

These stars
indicate accepting

states.

These stars
indicate accepting

states.

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

Since this is the
first rsw,o it'ss the

start state.

Since this is the
first rsw,o it'ss the

start state.

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

Questisn ts
psnder: Why isn’t
there a cslumn
here fsr ?Σ

Questisn ts
psnder: Why isn’t
there a cslumn
here fsr ?Σ

q3

My Turn to Code Things Up!

int kTransitionTable[kNumStates][kNumSymbols] = {
 {0, 0, 1, 3, 7, 1, …},
 …
};
bool kAcceptTable[kNumStates] = {
 false,
 true,
 true,
 …
};
bool SimulateDFA(string input) {
 int state = 0;
 for (char ch: input) {
 state = kTransitionTable[state][ch];
 }
 return kAcceptTable[state];
}

Thought Experiment:
How would you simulate an NFA in

software?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}
b

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a

{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a b

{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a b

{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a b

{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

*{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a b

{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

*{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀}
a b

{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

*{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

Some Caveats

● Question: what about ε-transitions?
● Answer: always include any states you can

reach by following ε-transitions.
● Question: what happens if there are no

transitions to follow from a set of states for
the character you’re trying to fll in?
● Answer: then the set of states you can reach is

the empty set!
● Example included in the appendix of this

lecture showing this construction with both
of these scenarios.

The Subset Construction

● This construction for transforming an NFA into a DFA is
called the subset construction (or sometimes the
powerset construction).
● Each state in the DFA is associated with a set of states in the NFA.
● The start state in the DFA corresponds to the start state of the

NFA, plus all states reachable via ε-transitions.
● If a state q in the DFA corresponds to a set of states S in the NFA,

then the transition from state q on a character a is found as
follows:
– Let S' be the set of states in the NFA that can be reached by following a

transition labeled a from any of the states in S. (This set may be empty.)
– Let S'' be the set of states in the NFA reachable from some state in S' by

following zero or more epsilon transitions.
– The state q in the DFA transitions on a to a DFA state corresponding to the

set of states S''.

● Read Sipser for a formal account.

The Subset Construction

● For the purposes of this class, we won’t
ask you to actually perform the subset
construction.

● Hopefully though, you’ve been convinced
that, in principle, you could follow this
procedure to turn any NFA into a DFA.

The Subset Construction

● In converting an NFA to a DFA, the DFA's
states correspond to sets of NFA states.

● Useful fact: |℘(S)| = 2|S| for any fnite set S.
● In the worst-case, the construction can

result in a DFA that is exponentially larger
than the original NFA.

● Question to ponder: Can you fnd a family
of languages that have NFAs of size n, but
no DFAs of size less than 2n?

A language L is called a regular language
if there exists a DFA D such that (ℒ D) = L.

An Important Result

Theorem: A language L is regular if there
is some NFA N such that (ℒ N) = L.

Proof Sketch: If L is regular, there exists
some DFA for it, which we can easily
convert into an NFA.

If L is accepted by some NFA, we can use
the subset construction to convert it into
a DFA that accepts the same language, so
L is regular. ■

An Important Result

Theorem: A language L is regular if there
is some NFA N such that (ℒ N) = L.

Proof Sketch: If L is regular, there exists
some DFA for it, which we can easily
convert into an NFA.

If L is accepted by some NFA, we can use
the subset construction to convert it into
a DFA that accepts the same language, so
L is regular. ■

An Important Result

Theorem: A language L is regular if there
is some NFA N such that (ℒ N) = L.

Proof Sketch: If L is regular, there exists
some DFA for it, which we can easily
convert into an NFA.

If L is accepted by some NFA, we can use
the subset construction to convert it into
a DFA that accepts the same language, so
L is regular. ■

An Important Result

Theorem: A language L is regular if there
is some NFA N such that (ℒ N) = L.

Proof Sketch: If L is regular, there exists
some DFA for it, which we can easily
convert into an NFA.

If L is accepted by some NFA, we can use
the subset construction to convert it into
a DFA that accepts the same language, so
L is regular. ■

An Important Result

Theorem: A language L is regular if there
is some NFA N such that (ℒ N) = L.

Proof Sketch: If L is regular, there exists
some DFA for it, which we can easily
convert into an NFA.

If L is accepted by some NFA, we can use
the subset construction to convert it into
a DFA that accepts the same language, so
L is regular. ■ ■

Why This Matters

● We now have two perspectives on regular
languages:
● Regular languages are languages accepted

by DFAs.
● Regular languages are languages accepted

by NFAs.
● We can now reason about the regular

languages in two diferent ways.

Properties of Regular Languages

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

Σ*

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

Σ*

L

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

L L

Σ*

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L

L L

Σ*

Good proofwriting
exercise: prove L̿ = L
for any language L.

Good proofwriting
exercise: prove L̿ = L
for any language L.

Complementing Regular Languages

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a a

b

b

 Σ

L = { w ∈ {a, b}* | w does not contain aa as a substring }

q0

start
q1 q2

a a

b

b

 Σ

Complementing Regular Languages

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
 comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

Complementing Regular Languages

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
 comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

q5

q3q2q1q0

Closure Properties

● Theorem: If L is a regular language, then L is
also a regular language.

● As a result, we say that the regular languages
are closed under complementation.

All languages

Regular languages

L

L

Question to ponder:
are the nonregular
languages closed

under
complementation?

Question to ponder:
are the nonregular
languages closed

under
complementation?

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

The Union of Two Languages

Machine for L1
start

start Machine for L2

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

The Union of Two Languages

start

start

start

Machine for L1

Machine for L2

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

The Union of Two Languages

start

ε

ε

Machine for L1

Machine for L2

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

start

ε

ε

Machine for L1

Machine for L2Machine for
L1 ∪ L2

Question to
ponder: where have

you seen this idea
before?

Question to
ponder: where have

you seen this idea
before?

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2
regular as well?

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2
regular as well?

L1

The Intersection of Two Languages

L2

 L1 L2

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2
regular as well?

 L1 ∪ L2

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2
regular as well?

L1 ∪ L2

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2
regular as well?

Hey, it's De
Morgan's
laws!

Hey, it's De
Morgan's
laws!

Concatenation

String Concatenation

● If w ∈ Σ* and x ∈ Σ*, the concatenation of w and x,
denoted wx, is the string formed by tacking all the
characters of x onto the end of w.

● Example: if w = quo and x = kka, the concatenation
wx = quokka.

● Analogous to the + operator for strings in many
programming languages.

● Some facts about concatenation:
● The empty string ε is the identity element for concatenation:

wε = εw = w
● Concatenation is associative:

wxy = w(xy) = (wx)y

Concatenation

● The concatenation of two languages L₁
and L₂ over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }

=Two views of L₁L₂:

The set of all strings that can be made by
concatenating a string in L₁ with a string in L₂.

The set of strings that can be split into two
pieces: a piece from L₁ and a piece from L₂.

Conceptually similar to the Cartesian
product of two sets, only with strings.

Concatenation Example

● Let Σ = { a, b, …, z, A, B, …, Z } and consider
these languages over Σ:
● Noun = { Puppy, Rainbow, Whale, … }

● Verb = { Hugs, Juggles, Loves, … }

● The = { The }

● The language TheNounVerbTheNoun is
● { ThePuppyHugsTheWhale,

 TheWhaleLovesTheRainbow,
 TheRainbowJugglesTheRainbow, … }

Concatenation

● The concatenation of two languages L₁ and L₂
over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }
● Two views of L₁L₂:

● The set of all strings that can be made by concatenating
a string in L₁ with a string in L₂.

● The set of strings that can be split into two pieces: a
piece from L₁ and a piece from L₂.

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two
strings xy such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.
● Whenever it reaches an accepting state, optionally

hand the rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the
split was incorrect.

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two
strings xy such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.
● Whenever it reaches an accepting state, optionally

hand the rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the
split was incorrect.

Machine for L1

start start

Machine for L2

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two
strings xy such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.
● Whenever it reaches an accepting state, optionally

hand the rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the
split was incorrect.

start start

b o o k k e e ep r

Machine for L1 Machine for L2

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two
strings xy such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.
● Whenever it reaches an accepting state, optionally

hand the rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the
split was incorrect.

start start

b o o k k e e ep r

Machine for L1 Machine for L2

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two
strings xy such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.
● Whenever it reaches an accepting state, optionally

hand the rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the
split was incorrect.

start start

b o o k k e e ep r

Machine for L1 Machine for L2

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two
strings xy such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.
● Whenever it reaches an accepting state, optionally

hand the rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the
split was incorrect.

Concatenating Regular Languages

Concatenating Regular Languages

start start

Machine for
L1

Concatenating Regular Languages

start start
start start

Machine for
L1

Machine for
L2

Concatenating Regular Languages

start

ε

ε

ε

start

Machine for
L1

Machine for
L2

Concatenating Regular Languages

start

ε

ε

ε

start

Machine for
L1

Machine for
L2

Concatenating Regular Languages

start

ε

ε

ε

start

Machine for
L1

Machine for
L2

Machine for L1L2

Lots and Lots of Concatenation

● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of

strings in L.

{ aaaa, aab, baa, bb }
● LLL is the set of strings formed by concatenating triples

of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating

quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation

● We can defne what it means to “exponentiate” a
language as follows:

● L0 = {ε}
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero strings

together is the empty string.
● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

● Question to ponder: Why defne L0 = {ε}?
● Question to ponder: What is Ø0?

The Kleene Closure

● An important operation on languages is the
Kleene Closure, which is defned as

L* = { w ∈ Σ* | ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L* if ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of concatenating
zero or more strings in L together, possibly with
repetition.

● Question to ponder: What is Ø*?

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L* as the set of strings

you can make if you have a
collection of stamps – one for each
string in L – and you form every
possible string that can be made

from those stamps.

Think of L* as the set of strings
you can make if you have a

collection of stamps – one for each
string in L – and you form every
possible string that can be made

from those stamps.

Reasoning about Infnity

● If L is regular, is L* necessarily regular?
● ⚠ A Bad Line of Reasoning: ⚠

● L0 = { ε } is regular.
● L1 = L is regular.
● L2 = LL is regular
● L3 = L(LL) is regular
● …
● Regular languages are closed under union.
● So the union of all these languages is

regular.

Reasoning about Infnity

Reasoning about Infnity

x

x

Reasoning about Infnity

x

x

Reasoning about Infnity

x

x

Reasoning about Infnity

x

x

Reasoning about Infnity

x

x

Reasoning about Infnity

x

x

Reasoning about Infnity

x

x

≠ 2x

Reasoning about Infnity

0.9 < 1

Reasoning about Infnity

0.99 < 1

Reasoning about Infnity

0.999 < 1

Reasoning about Infnity

0.9999 < 1

Reasoning about Infnity

0.99999 < 1

Reasoning about Infnity

0.99999 <≮ 1

Reasoning about Infnity

0 is fnite

Reasoning about Infnity

1 is fnite

Reasoning about Infnity

2 is fnite

Reasoning about Infnity

3 is fnite

Reasoning about Infnity

4 is fnite

Reasoning about Infnity

∞ is fnite

Reasoning about Infnity

∞ is fnite
^ not

Reasoning About the Infnite

● If a series of fnite objects all have some
property, the “limit” of that process does
not necessarily have that property.

● In general, it is not safe to conclude that
some property that always holds in the
fnite case must hold in the infnite case.
● (This is why calculus is interesting).

Idea: Can we directly convert an NFA for
language L to an NFA for language L*?

The Kleene Star

start

Machine for L

The Kleene Star

εstart

Machine for L

The Kleene Star

εstart

Machine for L

The Kleene Star

εstart

ε

ε

Machine for L

The Kleene Star

εstart

ε

ε

Machine for L

The Kleene Star

εstart

ε

ε

Machine for L

Machine for L*

The Kleene Star

εstart

ε

ε

Machine for L

Machine for L*

Question: Why add the
new state out front?
Why not just make the

old start state
accepting?

Question: Why add the
new state out front?
Why not just make the

old start state
accepting?

Closure Properties

● Theorem: If L₁ and L₂ are regular
languages over an alphabet Σ, then so are
the following languages:
● L₁
● L₁ ∪ L₂
● L₁ ∩ L₂
● L₁L₂
● L₁*

● These properties are called closure
properties of the regular languages.

Next Time

● Regular Expressions
● Building languages from the ground up!

● Thompson’s Algorithm
● A UNIX Programmer in Theoryland.

● Kleene’s Theorem
● From machines to programs!

Appendix: Extended Subset
Construction Example

q₄

q₀

q₂

start

ε

 b

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b

a b

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b

a b

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b

a b

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄}a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄}a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄}a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄}a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄}a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Øa

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Øa

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Øa

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Øa

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Øa

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄} {q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄} {q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄} {q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄} {q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄} {q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄} {q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄} {q₄} {q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄} {q₄} {q₃, q₄}

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄} {q₄} {q₃, q₄}

Ø

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄} {q₄} {q₃, q₄}

Ø Ø Ø

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
{q₀, q₃}

a b
{q₁, q₄} {q₄}

{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

{q₃} {q₄} {q₄}

{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

{q₃, q₄} {q₄} {q₃, q₄}

Ø Ø Ø

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
*{q₀, q₃}

a b
{q₁, q₄} {q₄}

*{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

*{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

*{q₃} {q₄} {q₄}

*{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

*{q₃, q₄} {q₄} {q₃, q₄}

Ø Ø Ø

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

q₄

q₀

q₂

start

ε

 b
*{q₀, q₃}

a b
{q₁, q₄} {q₄}

*{q₁, q₄} Ø {q₂, q₃}

{q₄} Ø {q₃}

*{q₂, q₃} {q₀, q₃, q₄} {q₀, q₃, q₄}

*{q₃} {q₄} {q₄}

*{q₀, q₃, q₄} {q₁, q₄} {q₃, q₄}

*{q₃, q₄} {q₄} {q₃, q₄}

Ø Ø Ø

a

Σ

b

q₁

q₃

Σ

Once More, With Epsilons!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Part II.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106

	Part III.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

	xtra material.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

	Part I.pdf
	Slide 1

