Finite Automata

Part Two

Recap from Last Time

DFAs

 ADFA is a

e Deterministic
 Finite
 Automaton

 DFAs are the simplest type of automaton
that we will see in this course.

DFAs

e A DFA is defined relative to some
alphabet 2.

* For each state in the DFA, there must be
exactly one transition defined for each
symbol in X.

* This is the “deterministic” part of DFA.
 There is a unique start state.

 There are zero or more accepting states.

A language L is called a regular language
if there exists a DFA D such that C(D) = L.

N FASs

* An NFA is a

e Nondeterministic
 Finite
e Automaton

 Can have missing transitions or multiple
transitions defined on the same input
symbol.

« Accepts if any possible series of choices
leads to an accepting state.

Hello, NFA!

tart]
ORRORE O

h |1

Hello, NFA!

tart]
OB OO

h |1

2)

Hello, NFA!

tart]
IORRORE O

h |1

2)

Hello, NFA!

tart]
IORRORE O

h |1

)

Hello, NFA!

tart]
IORRORE O

h |1

)

Hello, NFA!

tart i
INORRORE O

SSEAL

= h |1

OFAPPROVAL

Tragedy in Paradise

OO

Tragedy in Paradise

OO

Tragedy in Paradise

ROAOR

Tragedy in Paradise

ROAOR

Tragedy in Paradise

OO

Tragedy in Paradise

OO

Tragedy in Paradise

OO

Tragedy in Paradise

NFA Languages

tart]
IORRORE O

The language of an NFA is
C(N) = {we X*¥| N accepts w }.

What is the language of this NFA?
(Assume > = {h, 1}.)

NFA Languages

The language of an NFA is

C(N) = {we 2X*¥| Naccepts w }.

tart
0,1
2
start start start

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

« NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

 NFAs are not required to follow e-transitions.
It's simply another option at the machine's
disposal.

Intuiting Nondeterminism

 Nondeterministic machines are a serious
departure from physical computers. How
can we build up an intuition for them?

 There are two particularly usetul
frameworks for interpreting
nondeterminism:

* Perfect positive guessing
« Massive parallelism

Perfect Positive Guessing

2

Perfect Positive Guessing

2

a b a b a

Perfect Positive Guessing

2

a b a b a

Perfect Positive Guessing

2

a b ab a

Perfect Positive Guessing

2

a b ab a

Perfect Positive Guessing

2

a b ab a

Perfect Positive Guessing

2

a b ab a

Perfect Positive Guessing

2

a b ab a

Perfect Positive Guessing

2

a b ab a

Perfect Positive Guessing

2

a b ab a

Pertect Positive Guessing

2

ROEOEOEO

SSEAL

seRmp—

a b ab a

OFAPPROVAL

Perfect Positive Guessing

 We can view nondeterministic machines as
having Magic Superpowers that enable them
to guess choices that lead to an accepting state.

 If there is at least one choice that leads to an
accepting state, the machine will guess it.

 If there are no choices, the machine guesses any one
of the wrong guesses.

* There is no known way to physically model this
intuition of nondeterminism - this is quite a
departure from reality!

Massive Parallelism

2

a b a b a

Massive Parallelism

2

a b a b a

Massive Parallelism
>
[\

a b a b a

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

a b a b a

Massive Parallelism

2

a b a b a

Massive Parallelism

2

a b ab a

Massive Parallelism
>
[\

a b ab a

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

a b ab a

Massive Parallelism

2

a b ab a

Massive Parallelism
>
[\

a b ab a

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

a b ab a

Massive Parallelism

2

a b ab a

Massive Parallelism

2

a b ab a

Massive Parallelism
>
[\

a b ab a

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

a b ab a

Massive Parallelism
>
[\

a b ab a

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

a b ab a

Massive Parallelism

We're in at least one
accepling state, so
There's some path that
gels us to an accepting

state,
SSEAL
a b a b a g

r-""".

OF APPROVAL

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

Massive Parallelism

2

Massive Parallelism

2

a b ab

Massive Parallelism
>
[\

a b ab

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

a b ab

Massive Parallelism

2

a b ab

Massive Parallelism
>
[\

a b ab

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

a b ab

Massive Parallelism

2

a b ab

Massive Parallelism

2

a b ab

Massive Parallelism
>
[\

a b ab

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

2

a b ab

Massive Parallelism

a b ab

Massive Parallelism

« An NFA can be thought of as a DFA that can be in many
states at once.

« At each point in time, when the NFA needs to follow a
transition, it tries all the options at the same time.

* (Here's a rigorous explanation about how this works; read
this on your own time).

« Start off in the set of all states formed by taking the start state
and including each state that can be reached by zero or more &-
transitions.

« When you read a symbol a in a set of states S:

- Form the set S’ of states that can be reached by following a single a
transition from some state in S.

- Your new set of states is the set of states in S’, plus the states reachable
from S’ by following zero or more e-transitions.

So What?

e Each intuition of nondeterminism is useful in a
different setting:

* Perfect guessing is a great way to think about how to
design a machine.

 Massive parallelism is a great way to test machines - and
has nice theoretical implications.

 Nondeterministic machines may not be feasible, but
they give a great basis for interesting questions:

 Can any problem that can be solved by a nondeterministic
machine be solved by a deterministic machine?

 Can any problem that can be solved by a nondeterministic
machine be solved efficiently by a deterministic machine?

 The answers vary from automaton to automaton.

Designing NFASs

Designing NFAs

- Embrace the nondeterminism!
e Good model: Guess-and-check:

* Is there some information that you'd really like to
have? Have the machine nondeterministically guess
that information.

 Then, have the machine deterministically check that
the choice was correct.

 The guess phase corresponds to trying lots of
different options.

 The check phase corresponds to filtering out
bad guesses or wrong options.

Guess-and-Check

L={we{o, 1}*| wendsin 010 or 101 }

Guess-and-Check

L={we{o, 1}*| wendsin 010 or 101 }

Guess-and-Check

L={we{o, 1}*| wendsin 010 or 101 }

Nondeterministically guess when the

end of the string is coming up.
start) 5
Deterministically check whether you

were correct,

Guess-and-Check

L={we{o, 1}*| wendsin 010 or 101 }

Guess-and-Check

L={we{o, 1}*| wendsin 010 or 101 }

Guess-and-Check

L={we{o, 1}*| wendsin 010 or 101 }

Guess-and-Check

L={we{o, 1}*| wendsin 010 or 101 }

Guess-and-Check

L={we{o, 1}*| wendsin 010 or 101 }

Guess-and-Check

L={we{o, 1}*| wendsin 010 or 101 }

Guess-and-Check

L={we{o, 1}*| wendsin 010 or 101 }

Guess-and-Check

L={we{o, 1}*| wendsin 010 or 101 }

Guess-and-Check

L={we{o, 1}*| wendsin 010 or 101 }

Guess-and-Check

L={we{o,1}*| wendsin 010 or 101 }

OO ®
0
O 1

start ‘) 5 1 01

- -,
— ‘» .
A

Guess-and-Check

L ={we€{a b, c}*|atleast one of a, b, or cis not in w }

Guess-and-Check

L ={we€{a b, c}*|atleast one of a, b, or cis not in w }

Guess-and-Check

L ={we€{a b, c}*|atleast one of a, b, or cis not in w }

Nondeterministically
guess which
character is missing.

Deterministically
check whether that
character is indeed
missing.

Guess-and-Check

L ={we€{a b, c}*|atleast one of 3, b, or cis not in w }

Guess-and-Check

L ={we€{a b, c}*|atleast one of 3, b, or cis not in w }

Guess-and-Check

L ={we€{a b, c}*|atleast one of 3, b, or cis not in w }

Guess-and-Check

L ={we€{a b, c}*|atleast one of 3, b, or cis not in w }

Guess-and-Check

L ={we€{a b, c}*|atleast one of 3, b, or cis not in w }

Guess-and-Check

L ={we€{a b, c}*|atleast one of 3, b, or cis not in w }

Guess-and-Check

L ={we€{a b, c}*|atleast one of 3, b, or cis not in w }

Guess-and-Check

L ={we€{a b, c}*|atleast one of 3, b, or cis not in w }

Just how powertful are NFAS?

NFAs and DFAs

 Any language that can be accepted by a
DFA can be accepted by an NFA.

« Why?
 Every DFA essentially already is an NFA!

* Question: Can any language accepted by
an NFA also be accepted by a DFA?

* Surprisingly, the answer is yes!

Tabular DFAs

0O 1

Tabular DFAs

Tabular DFAs

Tabular DFAs

1 0
start . 0 o. .e':'.
u J 5
1
0O 1
ﬁ*qO ql qO
These stars d, 4; 4,

indicate accepting

states., qz q3 qO

Tabular DFAs

0 1
X
f’ dy 4, 4,
Since this is the d, 4; 4,
first row, it's the
start state. q2 q3 qO
X
d, 4, q,

Tabular DFAs

1 0)
REORORO
1 2
0O 1
* Question 1o
qO ql qO ponder: Why isn‘t
there a column
ql q3 q2 here for =?
d, 4, 4,
b S
d, 4, q,

My Turn to Code Things Up!

int kTransitionTable[kNumStates][kNumSymbols] = {
{0: @: 1: 3: 7: 1: m}:

}s

bool kAcceptTable[kNumStates] = {
false,
true,
true,

}s
bool SimulateDFA(string input) {
int state = 0;
for (char ch: input) {
state = kTransitionTable[state][ch];
}

return kAcceptTable[state];

Thought Experiment:
How would you simulate an NFA in
software?

—~

{qo} {qo, q1}

2

{qo} {qo, q1} {qo}

2

{qo} {qo, q1} {qo}

2

{qo} {qo, q1} {qo}

2

{qo} {qo, q1} {qo}

1qo, g1}

{qo}

1qo, g1}

{qo}

1qo, g1}

{qo}

1qo, g1}

{qo}

1qo, g1}

2

{qo} {qo, q1} {qo}

1qo, g1}

2

{qo} {qo, q1} {qo}

{CIO, CZ1} {CIO, Cll}

{qo}

1qo, g1}

{qo}

1qo, g1}

1qo, g1}

{qo}

1qo, g1}

{qo}

1qo, g1}

1qo, g1}

2

{qo} {qo, q1} {qo}

{qo, q1} {qo, q1} {qo, q2}

2

{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

1qo, g2}

2

{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

1qo, g2} {qo, q1, q3}

2

{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

1qo, g2} {qo, q1, q3}

2

{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

1qo, g2} {qo, q1, q3}

2

{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2} {qo, q1, q3} {qo}

2

{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2} {qo, q1, q3} {qo}

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3}

{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, q3} {qo}

{qo, q1, q3}

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1}

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1}

{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}

{qo, q1, g3} {qo, q1}

{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}

{qo, q1, g3} {qo, q1}

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1} {qo, q2}

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, q3} {qo}
{qo, q1, q3} {qo, q1} {qo, q2}
b a
| |

ﬂ»[{qo} } a >[{qO, qi}
\ b

| {00 a2

‘ a

o | {a0. a1 a0}

\r

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, q3} {qo}
{qo, q1, q3} {qo, q1} {qo, q2}
b a
| |

ﬂ»[{qo} } a >[{qO, qi}
\ b

| {00 a2

‘ a

o | {a0. a1 a0}

\r

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
*{qo, q1, q3} {qo, q1} {qo, q2}
b a
R 4

ﬂ»[{qo} } a >[{qO, qi}
\ b

| {00 a2

‘ a

o | {a0. a1 a0}

\r

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
*{qo, q1, q3} {qo, q1} {qo, q2}
b a
R 4

ﬂ’[{qo} } 2 ’[{qo, q1}
\ ib a
N\ a

[{qo, a2} |, b >[[{qo,ql,qgj]

2

__— a b
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
*{qo, q1, q3} {qo, q1} {qo, q2}
b a
R 4

ﬂ’[{qo} } 2 ’[{qo, q1}
\ ib a
N\ a

[{qo, a2} |, b >[[{qo,ql,qgj]

2

2 b2 a b a

b
L1 L1

{qo} }<[{qolql}]\
b] a

[{qo, qz}L , >[[{qo,ql,qgj]

start

2

2 b2 a b a

b
L1 L1

{qo} } a >[{qO, q:}
ST

[{qo, qz}L , >[[{qo,ql,qgj]

start

2

a b a ab
1 3
3 2,

{qo} }<[{qolql}]\
b] a

[{qo, qz}L , >[[{qo,ql,qgj]

start

2

2 b a2 b a

b
start — /9\‘
{qo} } : >[{qo, q

R

[{qo, qz}L , >[[{qo,ql,qgj]

2

2 b2 a b a

b
L1 L1

{qo} }<[{qolql}]\
b] a

[{qo, CZZ}L , >[[{qo,ql,qgj]

start

2

2 b a2 b a

b
L1 L1

{qo} }<[{qolql}]\
b] a

[{qO, qz}L : >[[{qo,ql,qsﬂ]

start

2

2 b a2 b a
*
//9\\ L1

{qo} }<[{qolql}]\
b] a

[{qo, qz}L , >[[{qo,ql,qgj]

start

2

2 b2 a b a

b
L1 L1

{qo} }<[{qolql}]\
b] a

[{qo, CZZ}L , >[[{qo,ql,qgj]

start

2

2 b2 a b a

b
L1 L1

{qo} }<[{qolql}]\
b] a

[{qO, qz}L : >[[{qo,ql,qsﬂ]

start

Some Caveats

* Question: what about e-transitions?

 Answer: always include any states you can
reach by following e-transitions.

* Question: what happens if there are no
transitions to follow from a set of states for
the character you’re trying to fill in?

 Answer: then the set of states you can reach is
the empty set!

 Example included in the appendix of this
lecture showing this construction with both
of these scenarios.

The Subset Construction

» This construction for transforming an NFA into a DFA is
called the subset construction (or sometimes the
powersetl construction).

« Each state in the DFA is associated with a set of states in the NFA.

 The start state in the DFA corresponds to the start state of the
NFA, plus all states reachable via e-transitions.

« If a state g in the DFA corresponds to a set of states S in the NFA,
then the transition from state g on a character a is found as
follows:

- Let S' be the set of states in the NFA that can be reached by following a
transition labeled a from any of the states in S. (This set may be empty.)

- Let §" be the set of states in the NFA reachable from some state in S' by
following zero or more epsilon transitions.

- The state g in the DFA transitions on a to a DFA state corresponding to the
set of states S"'.

 Read Sipser for a formal account.

The Subset Construction

* For the purposes of this class, we won’t
ask you to actually perform the subset
construction.

 Hopetully though, you’ve been convinced
that, in principle, you could follow this
procedure to turn any NFA into a DFA.

The Subset Construction

* In converting an NFA to a DFA, the DFA's
states correspond to sets of NFA states.

» Useful fact: |p(S)| = 2Is for any finite set S.

* In the worst-case, the construction can
result in a DFA that is exponentially larger
than the original NFA.

* Question to ponder: Can you find a family
of languages that have NFAs of size n, but
no DFAs of size less than 2n?

A language L is called a regular language
if there exists a DFA D such that C(D) = L.

An Important Result

Theorem: A language L is regular iff there
1s some NFA N such that C(N) = L.

An Important Result

Theorem: A language L is regular iff there
1s some NFA N such that C(N) = L.

Proof Sketch:

An Important Result

Theorem: A language L is regular iff there
1s some NFA N such that C(N) = L.

Proof Sketch: It L is regular, there exists
some DFA for it, which we can easily
convert into an NFA.

An Important Result

Theorem: A language L is regular iff there
1s some NFA N such that C(N) = L.

Proof Sketch: It L is regular, there exists
some DFA for it, which we can easily
convert into an NFA.

If L. is accepted by some NFA, we can use
the subset construction to convert it into
a DFA that accepts the same language, so
L is regular.

An Important Result

Theorem: A language L is regular iff there
1s some NFA N such that C(N) = L.

Proof Sketch: It L is regular, there exists
some DFA for it, which we can easily
convert into an NFA.

If L. is accepted by some NFA, we can use
the subset construction to convert it into
a DFA that accepts the same language, so
L is regular. ®

Why This Matters

 We now have two perspectives on reqgular
languages:

 Regular languages are languages accepted
by DFAs.

 Regular languages are languages accepted
by NFAs.

 We can now reason about the regular
languages in two different ways.

Properties of Regular Languages

The Complement of a Language

* Given a language L C 2*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

* Formally:
L=3*-L

The Complement of a Language

* Given a language L C 2*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

* Formally:
L=3*-L

>k

The Complement of a Language

* Given a language L C 2*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

* Formally:
L=3*-L

>k

The Complement of a Language

* Given a language L C 2*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

* Formally:

L=3*-L

The Complement of a Language

* Given a language L C 2*, the complement
of that language (denoted L) is the
language of all strings in 2* that aren't in L.

* Formally:

Good prootwriting
exercise: prove L =1L
tor any language L.

Complementing Regular Languages

L={weEe {a b}* | w contains aa as a substring }

={we€ {a, b}* | w does not contain aa as a substring }

start a
b

)2

@

2

@
@

Complementing Regular Languages

L={we/{a * /}*| wdoesn't represent a C-style
comment }

Complementing Regular Languages

L={we/{a * /}*| wdoesn't represent a C-style
comment }

Closure Properties

» Theorem: If L is a regular language, then L is
also a regular language.

* As a result, we say that the regular languages
are closed under complementation.

Question fo ponder:
are the nonregular
languages closed
under
complementation?

All languages

The Union of Two Languages

« If L, and L, are languages over the alphabet X, the
language L, U L, is the language of all strings in at
least one of the two languages.

« If L, and L, are regular languages, is L, U L,?

The Union of Two Languages

« If L, and L, are languages over the alphabet X, the
language L, U L, is the language of all strings in at
least one of the two languages.

« If L, and L, are regular languages, is L, U L,?

S t,()JJV> Machine for L,
S I‘tG’\» Machine for L,

The Union of Two Languages

« If L, and L, are languages over the alphabet X, the
language L, U L, is the language of all strings in at
least one of the two languages.

« If L, and L, are regular languages, is L, U L,?

S t,C)JJV> Machine for L,
S 1"1:_6;» Machine for L,

start ,O

The Union of Two Languages

« If L, and L, are languages over the alphabet X, the
language L, U L, is the language of all strings in at
least one of the two languages.

« If L, and L, are regular languages, is L, U L,?

& Machine for L,

start

Machine for L,

The Union of Two Languages

« If L, and L, are languages over the alphabet X, the
language L, U L, is the language of all strings in at
least one of the two languages.

« If L, and L, are regular languages, is L, U L,?

‘— --
4 N

Question to
ponder: where have
you seen this idea
before?

Machine for L,

start:

Machine for

Machine for L,:
L UL, -

[
4
4

NNNN
--

The Intersection of Two Languages

- If L, and L, are languages over X, then L, N L, is
the language of strings in both L, and L,.

« Question: If L, and L, are regular, is L, N L,
regular as well?

The Intersection of Two Languages

- If L, and L, are languages over %, then L, N L, is
the language of strings in both L, and L..

« Question: If L. and L, are regular, is L, N L,
regular as well?

The Intersection of Two Languages

- If L, and L, are languages over 2, then L. N L, is
the language of strings in both L, and L,.

e Question: If L, and L, are regular, is L, N L,
regular as well?

The Intersection of Two Languages

- If L, and L, are languages over 2, then L. N L, is
the language of strings in both L, and L,.

e Question: If L, and L, are regular, is L, N L,
regular as well?

The Intersection of Two Languages

- If L, and L, are languages over 2, then L. N L, is
the language of strings in both L, and L,.

e Question: If L, and L, are regular, is L, N L,
regular as well?

Hey, it's De
Morgan's

2 | | qvwer

L. UL

Concatenation

String Concatenation

e [fw € 2* and x € X*, the concatenation of w and x,
denoted wx, is the string formed by tacking all the
characters of x onto the end of w.

« Example: if w = quo and x = kka, the concatenation
wXx = quokka.

* Analogous to the + operator for strings in many
programming languages.
 Some facts about concatenation:
 The empty string ¢ is the identity element for concatenation:
WE = EW =W
 Concatenation is associative:
wxy = w(xy) = (wx)y

Concatenation

 The concatenation of two languages L
and L2 over the alphabet X is the language

Lil> ={wx €X* | w€Li AXxE€EL:z}

Concatenation Example

e JletX={a b, ..., z A B, ..., Z} and consider
these languages over :

* Noun = { Puppy, Rainbow, Whale, ... }
 Verb = { Hugs, Juggles, Loves, ... }
e The = { The }

 The language TheNounVerbTheNoun is

 { ThePuppyHugsTheWhale,
TheWhaleLovesTheRainbow,
TheRainbowJugglesTheRainbow, ... }

Concatenation

 The concatenation of two languages L1 and Lz
over the alphabet X is the language

Lil ={wx€X*|we€LiAXx€ELz2}
* Two views of LiLo:

« The set of all strings that can be made by concatenating
a string in Li with a string in Lo.

 The set of strings that can be split into two pieces: a
piece from Li1 and a piece from L.

Concatenating Regular Languages

« If L, and L, are regular languages, is L,L,?

* Intuition - can we split a string w into two
strings xy such that x € L, and y € L,?

Concatenating Regular Languages

« If L, and L, are regular languages, is L,L,?

* Intuition - can we split a string w into two
strings xy such that x € L, and y € L,?

S rt,C)i> S rt,@l»

Machine for L, Machine for L,

Concatenating Regular Languages

« If L, and L, are regular languages, is L,L,?

* Intuition - can we split a string w into two
strings xy such that x € L, and y € L,?

S rt,C)i> S rt,@l»

Machine for L, Machine for L,

b ook Kkeeper

Concatenating Regular Languages

« If L, and L, are regular languages, is L,L,?

* Intuition - can we split a string w into two
strings xy such that x € L, and y € L,?

S rt,C)i> S rt,@l»

Machine for L, Machine for L,

b o o kik e eper

Concatenating Regular Languages

« If L, and L, are regular languages, is L,L,?

* Intuition - can we split a string w into two
strings xy such that x € L, and y € L,?

S rt,C)i> S rt,@l»

Machine for L, Machine for L,

b ook kieepenr

Concatenating Regular Languages

« If L, and L, are regular languages, is L,L,?

* Intuition - can we split a string w into two
strings xy such that x € L, and y € L,?

e Idea:
« Run a DFA/NFA for L, on w.

 Whenever it reaches an accepting state, optionally
hand the rest of w to a DFA/NFA for L,.

« If the automaton for L, accepts the rest, w € LiL..

« If the automaton for L, rejects the remainder, the
split was incorrect.

Concatenating Regular Languages

Concatenating Regular Languages

O

start @
O

Machine for
L

1

Concatenating Regular Languages

start _(%‘
start @

@ Machine for

L

Machine for ’

L

1

Concatenating Regular Languages

start {

Machme for
L

Machine for ’

L

1

Concatenating Regular Languages

o

‘ Machine for
L

Machine for ’

L

1

Concatenating Regular Languages

‘—— --
- [N
o’

| o ‘:
CRONG

‘ Machine for
L2
Machine for
Ll

L 2
~~ —¢¢
A N B BN N BN N BN BN BN BN BN BN BN N BN BN BN BN BN BN BN N BN BN BN BN BN BN BN BN BN BN BN BN BN BN B WS

Machine for L L,

[.ots and Lots of Concatenation

« Consider the language L. = { aa, b }

« LLL is the set of strings formed by concatenating pairs of
strings in L.

{ aaaa, aab, baa, bb }

« LLL is the set of strings formed by concatenating triples
of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

« LLLL is the set of strings formed by concatenating
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation

 We can define what it means to “exponentiate” a
language as follows:

e [0 = {¢&}
 The set containing just the empty string.

» Idea: Any string formed by concatenating zero strings
together is the empty string.

e [n+1 = [[n

« Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

* Question to ponder: Why define Lo = {g}?
* Question to ponder: What is 0?

The Kleene Closure

 An important operation on languages is the
Kleene Closure, which is defined as

L*={we2X* | dn € N.we€ Ln}
 Mathematically:
wel* iff dne€ N.weln

 Intuitively, all possible ways of concatenating
zero or more strings in L together, possibly with
repetition.

* Question to ponder: What is 0*?

The Kleene Closure

If L =4 a,bb}, then L* = {
€,
a, bb,
aa, abb, bba, bbbb,
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

Think of L* as the set of strings
you can make if you have a
collection of stamps - one for each
string in L - and you torm every
possible string that can be made
from those <tamos.

Reasoning about Infinity

» If L is reqgular, is L* necessarily regular?

« A A Bad Line of Reasoning: A
« [={ ¢ } isreqgular.
.1 = L isreqgular.
 [.2 = LL is regular
[= L(LL) is regular

 Regular languages are closed under union.

* So the union of all these languages is
regular.

Reasoning about Infinity

Reasoning about Infinity

Reasoning about Infinity

Reasoning about Infinity

Reasoning about Infinity

Reasoning about Infinity

Reasoning about Infinity

Reasoning about Infinity

Reasoning about Infinity

09<1

Reasoning about Infinity

0.99 < 1

Reasoning about Infinity

0.999 <1

Reasoning about Infinity

0.9999 < 1

Reasoning about Infinity

0.99999 < 1

Reasoning about Infinity

0.99999 £ 1

Reasoning about Infinity

O is finite

Reasoning about Infinity

1 is finite

Reasoning about Infinity

2 1s finite

Reasoning about Infinity

3 1s finite

Reasoning about Infinity

4 is finite

Reasoning about Infinity

oo 1S finite

Reasoning about Infinity

oo 1S finite
* not

Reasoning About the Infinite

 If a series of finite objects all have some
property, the “limit” of that process does

not necessarily have tha

. property.

* In general, it is not safe -

0 conclude that

some property that always holds in the
finite case must hold in the infinite case.

* (This is why calculus is interesting).

Idea: Can we directly convert an NFA for
language L to an NFA for language L*?

The Kleene Star

5 Oo

O

Machine for L

The Kleene Star

g 5 0O
0

Machine for L

The Kleene Star

g 5 0O
0

Machine for L

The Kleene Star

start

Machine for L

The Kleene Star

start

Machine for L

The Kleene Star

s UEN B Ew
- N
¢‘ ~5

start O

~ v
.. -
...

Machine for L*

The Kleene Star

start :

S ~
QuesTion: 'wm add the | ‘

new state out front? ',

Why not just make the Machine fOI‘ L x'/

O\O' S‘\'aY't S'\'a‘t’e """'. -----------------------------
aocep‘\’iy\g? aChll’le fOI‘ L*

Closure Properties

» Theorem: If L1 and L2 are regular
languages over an alphabet %, then so are
the following languages:

e I1
e [1 U >
e [1NL>
e [1l.»
° Ll*
 These properties are called closure
properties of the regular languages.

Next Time

* Regular Expressions

* Building languages tfrom the ground up!
« Thompson’s Algorithm

A UNIX Programmer in Theoryland.
* Kleene’s Theorem

 From machines to programs!

Appendix: Extended Subset
Construction Example

Once More, With Epsilons!

Once More, With Epsilons!

Once More, With Epsilons!

Once More, With Epsilons!

Once More, With Epsilons!

{qo, g3}

Once More, With Epsilons!

{qo, g3}

Once More, With Epsilons!

{qo, g3}

Once More, With Epsilons!

{qo, g3}

Once More, With Epsilons!

{qo, g3}

Once More, With Epsilons!

{qo, g3} {q1, q4}

Once More, With Epsilons!

{qo, g3} {q1, q4}

Once More, With Epsilons!

{qo, g3} {q1, q4}

Once More, With Epsilons!

{qo, g3} {q1, q4}

Once More, With Epsilons!

{qo, g3} {q1, q4}

Once More, With Epsilons!

{qo, g3} {q1, q4}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, q4}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, q4}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, q4}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, q4}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, q4}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, q4}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, q4} D

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, q4} D

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, q4} D

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, q4} D

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, q4} D

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, q4} D

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, qa} & {q2 q3}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, qa} & {q2 q3}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, qa} & {q2 q3}

{q4}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, qa} & {q2 q3}

{q4}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, qa} & {q2 q3}

{q4}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, qa} & {q2 q3}

{q4}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

{q1, qa} & {q2 q3}

{q4}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

Q

{q1, g4} {q2, g3}

{q4} %)

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

Q

{q1, g4} {q2, g3}

{q4} %)

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

Q

{q1, g4} {q2, g3}

{q4} %)

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

Q

{q1, g4} {q2, g3}

{q4} %)

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

Q

{q1, g4} {q2, g3}

{q4} %)

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

Q

{q1, g4} {q2, g3}

{q4} %, {qs}

Once More, With Epsilons!

{qo, g3} {q1, q4} {q4}

Q

{q1, g4} {q2, g3}

{q4} %, {qs}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}

{qz2, g3}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}

{qz2, g3}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}

{qz2, g3}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}

{qz2, g3}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}

{qz2, g3}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}

{qz2, g3}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}

{qz2, g3}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}

{qz2, g3} {qo, g3, g4} | 1qo, g3, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}

{qz2, g3} {qo, g3, g4} | 1qo, g3, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}

{qz2, g3} {qo, g3, g4} | 1qo, g3, q4}

{gs}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}

{qz2, g3} {qo, g3, g4} | 1qo, g3, q4}

{gs}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}

{qz2, g3} {qo, g3, g4} | 1qo, g3, q4}

{gs}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}

{qz2, g3} {qo, g3, g4} | 1qo, g3, q4}

{gs}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}

{qz2, g3} {qo, g3, g4} | 1qo, g3, q4}

{gs}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}

{qz2, g3} {qo, g3, g4} | 1qo, g3, q4}

{qs3} {q4} {qa}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}

{qz2, g3} {qo, g3, g4} | 1qo, g3, q4}

{qs3} {q4} {qa}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}

{qo, g3, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}

{qo, g3, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}

{qo, g3, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}

{qo, g3, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}

{qo, g3, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}

{qo, g3, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}

{qo, g3, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, qa} %, {q2, qs}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qa} {qa}
{qo, g3, q4} {q1, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, qa} %, {q2, qs}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qa} {qa}
{qo, g3, q4} {q1, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, qa} %, {q2, qs}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qa} {qa}
{qo, g3, q4} {q1, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, qa} %, {q2, qs}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qa} {qa}
{qo, g3, q4} {q1, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, qa} %, {q2, qs}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qa} {qa}
{qo, g3, q4} {q1, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, qa} %, {q2, qs}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qa} {qa}
{qo, g3, q4} {q1, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, qa} %, {q2, qs}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qa} {qa}
{qo, g3, q4} {q1, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, qa} %, {q2, qs}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qa} {qa}
{qo, g3, q4} {q1, q4} {qs, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, qa} %, {q2, qs}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qa} {qa}
{qo, g3, q4} {q1, q4} {qs, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, qa} %, {q2, qs}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qa} {qa}
{qo, g3, q4} {q1, q4} {qs, q4}

{qs3, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, qa} %, {q2, qs}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qa} {qa}
{qo, g3, q4} {q1, q4} {qs, q4}

{qs3, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, qa} %, {q2, qs}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qa} {qa}
{qo, g3, q4} {q1, q4} {qs, q4}

{qs3, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, qa} %, {q2, qs}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qa} {qa}
{qo, g3, q4} {q1, q4} {qs, q4}

{qs3, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, qa} %, {q2, qs}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qa} {qa}
{qo, g3, q4} {q1, q4} {qs, q4}

{qs3, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, qa} %, {q2, qs}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qa} {qa}
{qo, g3, q4} {q1, q4} {qs, q4}

{qs3, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}
{qo, g3, q4} {q1, q4} {qs, q4}
{qs, q4} {qs}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}
{qo, g3, q4} {q1, q4} {qs, q4}
{qs, q4} {qs}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}
{qo, g3, q4} {q1, q4} {qs, q4}
{qs, q4} {qs}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}
{qo, g3, q4} {q1, q4} {qs, q4}
{qs, q4} {qs}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}
{qo, g3, q4} {q1, q4} {qs, q4}
{qs, q4} {qs}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}
{qo, g3, q4} {q1, q4} {qs, q4}
{qs, q4} {qs}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}
{qo, g3, q4} {q1, q4} {qs, q4}
{qs, q4} {qs} {qs, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}
{qo, g3, q4} {q1, q4} {qs, q4}
{qs, q4} {qs} {qs, q4}

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}
{qo, g3, q4} {q1, q4} {qs, q4}
{qs, q4} {qs} {qs, q4}
%

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}
{qo, g3, q4} {q1, q4} {qs, q4}
{qs, q4} {qs} {qs, q4}
% % %

Once More, With Epsilons!

a b
{qo, g3} {q1, q4} {qs}
{q1, g4} % {q2 q3}
{qs} % {qs}
1q2, qs} {qo, g3, g1} | {qo, g3, q4}
{qs} {qs} {qs}
{qo, g3, q4} {q1, q4} {qs, q4}
{qs, q4} {qs} {qs, q4}
% % %

Once More, With Epsilons!

a b
*{qo, g3} {q1, q4} {qs}
*{q1, g4} % {q2 q3}
{qs} % {qs}
*{qz2, g3} {qo, g3, g1} | {qo, g3, q4}
*{qs} {qs} {qs}
*{qo, q3, q4} {q1, q4} {qs, q4}
*{qs, q4} {qs} {qs, q4}
% % %

Once More, With Epsilons!

a b
*{qo, g3} {q1, q4} {qs}
*{q1, g4} % {q2 q3}
{qs} % {qs}
*{qz2, g3} {qo, g3, g1} | {qo, g3, q4}
*{qs} {qs} {qs}
*{qo, q3, q4} {q1, q4} {qs, q4}
*{qs, q4} {qs} {qs, q4}
% % %

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Part II.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106

	Part III.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

	xtra material.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

	Part I.pdf
	Slide 1

