
  

Finite Automata
Part Two



  

Recap from Last Time



  

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton 
that we will see in this course.



  

DFAs

● A DFA is defned relative to some 
alphabet Σ.

● For each state in the DFA, there must be 
exactly one transition defned for each 
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.



  

A language L is called a regular language 
if there exists a DFA D such that (ℒ D) = L.



  

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Can have missing transitions or multiple 
transitions defned on the same input 
symbol.

● Accepts if any possible series of choices 
leads to an accepting state.



  

Hello, NFA!

q2q2q2q2q1q1q0q0

start h i

h i



  

q0 q2q2q2q2

Hello, NFA!

q1q1q0

start h i

h i



  

q1q0q0 q2q2q2q2

Hello, NFA!

q1

start h i

h i



  

q1q0q0 q2q2q2q2

Hello, NFA!

q1

start h i

h i



  

q2q2q1q1q0q0 q2q2

Hello, NFA!

start h i

h i



  

q2q2q1q1q0q0 q2q2

Hello, NFA!

start h i

h i



  

q2q2q2q2

Tragedy in Paradise

q1q1q0q0

start h i

h i p



  

q0 q2q2q2q2

Tragedy in Paradise

q1q1q0

start h i

h i p



  

q1q0q0 q2q2q2q2

Tragedy in Paradise

q1

start h i

h i p



  

q1q0q0 q2q2q2q2

Tragedy in Paradise

q1

start h i

h i p



  

q2q2q1q1q0q0 q2q2

Tragedy in Paradise

start h i

h i p



  

q2q2q1q1q0q0 q2q2

Tragedy in Paradise

start h i

h i p



  

q2q2q1q1q0q0 q2

Tragedy in Paradise

start h i

h i p



  

q2q2q1q1q0q0

Tragedy in Paradise

start h i

h i p



  

NFA Languages

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

What is the language of this NFA?
(Assume Σ = {h, i}.)

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

What is the language of this NFA?
(Assume Σ = {h, i}.)

q2q2q1q1q0q0

start h i



  

NFA Languages

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

q1q1q0q0 q2q2q2

start 1 1 q2

       0, 1

Σ = {0, 1}

q0q0

start

   Σ

q0q0

start
q0

start



  

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.



  

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε   

a

b

b, ε b

a

ε   

q4



  

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε   

a

b

b, ε b

a

ε   

q4 b a a b b



  

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε   

a

b

b, ε b

a

ε   

q4 b a a b b



  

q0q0 q1

q4 q5

q2

q0q3

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

start
q1

q4 q5

q2

q3

a

ε   

a

b

b, ε b

a

ε   

q4 b a a b b



  

q0q3q3

q0q0 q1

q4 q5

q2

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

start
q1

q4 q5

q2
a

ε   

a

b

b, ε b

a

ε   

q4 b a a b b



  

q4q0q3q3

q0q0 q1

q4 q5

q2

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

start
q1

q5

q2
a

ε   

a

b

b, ε b

a

ε   

b a a b b



  

q4

q1

q4q0q3q3

q0q0 q1

q5

q2

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

start

q5

q2
a

ε   

a

b

b, ε b

a

ε   

q4 b a a b b



  

q1 q2

q4

q1

q4q0q3q3

q0q0

q5

q2

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

start

q5

a

ε   

a

b

b, ε b

a

ε   

q4 b a a b b



  

q0 q2q1 q2

q4

q1

q4q0q3q3

q0

q5

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

start

q5

a

ε   

a

b

b, ε b

a

ε   

q4 b a a b b



  

q0q3

q0q0 q2q1 q2

q4

q1

q4q3 q5

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

start

q5

a

ε   

a

b

b, ε b

a

ε   

q4 b a a b b



  

q4q0q3q3

q0q0 q2q1 q2

q4

q1

q5

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

start

q5

a

ε   

a

b

b, ε b

a

ε   

b a a b b



  

q4 q5q4q0q3q3

q0q0 q2q1 q2q1

q5

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

start a

ε   

a

b

b, ε b

a

ε   

q4 b a a b b



  

q0q3 q5q4 q5q4q3

q0q0 q2q1 q2q1

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

start a

ε   

a

b

b, ε b

a

ε   

q4 b a a b b



  

q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

start a

ε   

a

b

b, ε b

a

ε   

b a a b b



  

q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

start a

ε   

a

b

b, ε b

a

ε   

b a a b b



  

ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

● NFAs are not required to follow ε-transitions. 
It's simply another option at the machine's 
disposal.



  

Intuiting Nondeterminism

● Nondeterministic machines are a serious 
departure from physical computers. How 
can we build up an intuition for them?

● There are two particularly useful 
frameworks for interpreting 
nondeterminism:
● Perfect positive guessing
● Massive parallelism



  

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start
q₀ q₁ q₂a b

Σ

q₃a q₃



  

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₀ q₁ q₂a b

Σ

b a b

q₃a

a

q₃



  

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₁ q₂a b

Σ

b a b

q₃a

a

q₃



  

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₁ q₂a b

Σ

b a b

q₃a

a

q₃



  

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₁ q₂a b

Σ

b a b

q₃a

a

q₃



  

q₀ q₁

a b

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₂a b

Σ

b

q₃a

a

q₃



  

q₀ q₁

a b

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₂a b

Σ

b

q₃a

a

q₃



  

q₁ q₂q₀ q₁

a b

q₀ q₂ q₃

Perfect Positive Guessing

start

a

a b

Σ

b

q₃a

a

q₃



  

q₁ q₂q₀ q₁

a b

q₀ q₂ q₃

Perfect Positive Guessing

start

a

a b

Σ

b

q₃a

a

q₃



  

q₃q₃q₂q₁ q₂q₀ q₁

a b

q₀

Perfect Positive Guessing

start

a

a b

Σ

b

a

a

q₃



  

q₃q₃q₂q₁ q₂q₀ q₁

a b

q₀

Perfect Positive Guessing

start

a

a b

Σ

b

a

a

q₃



  

Perfect Positive Guessing

● We can view nondeterministic machines as 
having Magic Superpowers that enable them 
to guess choices that lead to an accepting state.
● If there is at least one choice that leads to an 

accepting state, the machine will guess it.
● If there are no choices, the machine guesses any one 

of the wrong guesses.
● There is no known way to physically model this 

intuition of nondeterminism – this is quite a 
departure from reality!



  

q₃q₃q₂q₁ q₂q₀ q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃



  

q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃q₃

We're in at least one 
accepting state, so 

there's some path that 
gets us to an accepting 

state.

We're in at least one 
accepting state, so 

there's some path that 
gets us to an accepting 

state.



  

q₀ q₃q₂q₁

Massive Parallelism

start

a

a b

Σ

b a b

a q₃q₀



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃



  

q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃q₃

We’re not in any 
accepting state, so no 
possible path accepts.

We’re not in any 
accepting state, so no 
possible path accepts.



  

Massive Parallelism

● An NFA can be thought of as a DFA that can be in many 
states at once.

● At each point in time, when the NFA needs to follow a 
transition, it tries all the options at the same time.

● (Here's a rigorous explanation about how this works; read 
this on your own time).
● Start of in the set of all states formed by taking the start state 

and including each state that can be reached by zero or more ε-
transitions.

● When you read a symbol a in a set of states S:
– Form the set S’ of states that can be reached by following a single a 

transition from some state in S.
– Your new set of states is the set of states in S’, plus the states reachable 

from S’ by following zero or more ε-transitions.



  

So What?

● Each intuition of nondeterminism is useful in a 
diferent setting:
● Perfect guessing is a great way to think about how to 

design a machine.
● Massive parallelism is a great way to test machines – and 

has nice theoretical implications.
● Nondeterministic machines may not be feasible, but 

they give a great basis for interesting questions:
● Can any problem that can be solved by a nondeterministic 

machine be solved by a deterministic machine?
● Can any problem that can be solved by a nondeterministic 

machine be solved eficiently by a deterministic machine?
● The answers vary from automaton to automaton.



  

Designing NFAs



  

Designing NFAs

● Embrace the nondeterminism!
● Good model: Guess-and-check:

● Is there some information that you'd really like to 
have? Have the machine nondeterministically guess 
that information.

● Then, have the machine deterministically check that 
the choice was correct.

● The guess phase corresponds to trying lots of 
diferent options.

● The check phase corresponds to fltering out 
bad guesses or wrong options.



  

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }



  

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

0

    1

1

            1    

0

0 1

0     

1

            0    

1

start



  

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start         Σ

Nondeterministically guess when the 
end of the string is coming up.

 

Deterministically check whether you 
were correct.

Nondeterministically guess when the 
end of the string is coming up.

 

Deterministically check whether you 
were correct.



  

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start         Σ
1 0 1 0 1 0



  

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start         Σ
1 0 1 0 1 0



  

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start         Σ
1 0 1 0 1 0



  

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start         Σ
1 0 1 0 1 0



  

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start         Σ
1 0 1 0 1 0



  

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start         Σ
1 0 1 0 1 0



  

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1
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Just how powerful are NFAs?



  

NFAs and DFAs

● Any language that can be accepted by a 
DFA can be accepted by an NFA.

● Why?
● Every DFA essentially already is an NFA!

● Question: Can any language accepted by 
an NFA also be accepted by a DFA?

● Surprisingly, the answer is yes!
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My Turn to Code Things Up!

int kTransitionTable[kNumStates][kNumSymbols] = { 
     {0, 0, 1, 3, 7, 1, …}, 
      …
};
bool kAcceptTable[kNumStates] = {
    false,
    true,
    true,
    …
};
bool SimulateDFA(string input) {
    int state = 0;
    for (char ch: input) {
        state = kTransitionTable[state][ch];
    }
    return kAcceptTable[state];
}



  

Thought Experiment:
How would you simulate an NFA in 

software?
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Some Caveats

● Question: what about ε-transitions? 
● Answer: always include any states you can 

reach by following ε-transitions. 
● Question: what happens if there are no 

transitions to follow from a set of states for 
the character you’re trying to fll in?
● Answer: then the set of states you can reach is 

the empty set!
● Example included in the appendix of this 

lecture showing this construction with both 
of these scenarios.



  

The Subset Construction

● This construction for transforming an NFA into a DFA is 
called the subset construction (or sometimes the 
powerset construction).
● Each state in the DFA is associated with a set of states in the NFA.
● The start state in the DFA corresponds to the start state of the 

NFA, plus all states reachable via ε-transitions.
● If a state q in the DFA corresponds to a set of states S in the NFA, 

then the transition from state q on a character a is found as 
follows:
– Let S' be the set of states in the NFA that can be reached by following a 

transition labeled a from any of the states in S. (This set may be empty.)
– Let S'' be the set of states in the NFA reachable from some state in S' by 

following zero or more epsilon transitions.
– The state q in the DFA transitions on a to a DFA state corresponding to the 

set of states S''.

● Read Sipser for a formal account.



  

The Subset Construction

● For the purposes of this class, we won’t 
ask you to actually perform the subset 
construction. 

● Hopefully though, you’ve been convinced 
that, in principle, you could follow this 
procedure to turn any NFA into a DFA. 



  

The Subset Construction

● In converting an NFA to a DFA, the DFA's 
states correspond to sets of NFA states.

● Useful fact: |℘(S)| = 2|S| for any fnite set S.
● In the worst-case, the construction can 

result in a DFA that is exponentially larger 
than the original NFA.

● Question to ponder: Can you fnd a family 
of languages that have NFAs of size n, but 
no DFAs of size less than 2n?



  

A language L is called a regular language 
if there exists a DFA D such that (ℒ D) = L.



  

An Important Result

Theorem: A language L is regular if there
is some NFA N such that (ℒ N) = L.

Proof Sketch: If L is regular, there exists
some DFA for it, which we can easily 
convert into an NFA. 

If L is accepted by some NFA, we can use 
the subset construction to convert it into 
a DFA that accepts the same language, so 
L is regular. ■
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Why This Matters

● We now have two perspectives on regular 
languages:
● Regular languages are languages accepted 

by DFAs.
● Regular languages are languages accepted 

by NFAs.
● We can now reason about the regular 

languages in two diferent ways.



  

Properties of Regular Languages



  

The Complement of a Language

● Given a language L ⊆ Σ*, the complement 
of that language (denoted L) is the 
language of all strings in Σ* that aren't in L.

● Formally:

L = Σ* - L
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Good proofwriting 
exercise: prove L̿ = L 
for any language L.
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Complementing Regular Languages

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a a

b

b

          Σ

L = { w ∈ {a, b}* | w does not contain aa as a substring }
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start
q1 q2
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Complementing Regular Languages

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
       comment  }
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Complementing Regular Languages

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
       comment  }

q1

start
q2

* q3

*
q4

/q0
/

q5

     a, /      *
a

a, *

/, a

Σ  

Σ

q5

q3q2q1q0



  

Closure Properties

● Theorem: If L is a regular language, then L is 
also a regular language.

● As a result, we say that the regular languages 
are closed under complementation.

All languages

Regular languages

L

 

L

Question to ponder: 
are the nonregular 
languages closed 

under 
complementation?

Question to ponder: 
are the nonregular 
languages closed 

under 
complementation?



  

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the 
language L1 ∪ L2 is the language of all strings in at 
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?



  

The Union of Two Languages
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The Union of Two Languages
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Question to 
ponder: where have 

you seen this idea 
before?

Question to 
ponder: where have 

you seen this idea 
before?



  

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is 
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2 
regular as well?
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L1 ∪ L2

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is 
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2 
regular as well?

Hey, it's De 
Morgan's 
laws!

Hey, it's De 
Morgan's 
laws!



  

Concatenation



  

String Concatenation

● If w ∈ Σ* and x ∈ Σ*, the concatenation of w and x, 
denoted wx, is the string formed by tacking all the 
characters of x onto the end of w.

● Example: if w = quo and x = kka, the concatenation
wx = quokka.

● Analogous to the + operator for strings in many 
programming languages.

● Some facts about concatenation:
● The empty string ε is the identity element for concatenation:

wε = εw = w
● Concatenation is associative:

wxy = w(xy) = (wx)y



  

Concatenation

● The concatenation of two languages L₁ 
and L₂ over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }

=Two views of L₁L₂:

The set of all strings that can be made by 
concatenating a string in L₁ with a string in L₂. 

The set of strings that can be split into two 
pieces: a piece from L₁ and a piece from L₂.

Conceptually similar to the Cartesian 
product of two sets, only with strings.



  

Concatenation Example

● Let Σ = { a, b, …, z, A, B, …, Z } and consider 
these languages over Σ:
● Noun = { Puppy, Rainbow, Whale, … }

● Verb = { Hugs, Juggles, Loves, … }

● The = { The }

● The language TheNounVerbTheNoun is
● { ThePuppyHugsTheWhale,

   TheWhaleLovesTheRainbow,
   TheRainbowJugglesTheRainbow, … }



  

Concatenation

● The concatenation of two languages L₁ and L₂ 
over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }
● Two views of L₁L₂:

● The set of all strings that can be made by concatenating 
a string in L₁ with a string in L₂. 
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Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two 
strings xy such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.
● Whenever it reaches an accepting state, optionally 

hand the rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the 
split was incorrect.
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Concatenating Regular Languages
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Lots and Lots of Concatenation

● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of 

strings in L.

{ aaaa, aab, baa, bb }
● LLL is the set of strings formed by concatenating triples 

of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating 

quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}



  

Language Exponentiation

● We can defne what it means to “exponentiate” a 
language as follows:

● L0 = {ε}
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero strings 

together is the empty string.
● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by 
concatenating n strings, then concatenating one more.

● Question to ponder: Why defne L0 = {ε}?
● Question to ponder: What is Ø0?



  

The Kleene Closure

● An important operation on languages is the 
Kleene Closure, which is defned as

L* = { w ∈ Σ*  |  ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L*     if     ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of concatenating 
zero or more strings in L together, possibly with 
repetition.

● Question to ponder: What is Ø*?



  

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L* as the set of strings 

you can make if you have a 
collection of stamps – one for each 
string in L – and you form every 
possible string that can be made 

from those stamps.

Think of L* as the set of strings 
you can make if you have a 

collection of stamps – one for each 
string in L – and you form every 
possible string that can be made 

from those stamps.



  

Reasoning about Infnity

● If L is regular, is L* necessarily regular?
● ⚠ A Bad Line of Reasoning: ⚠

● L0 = { ε } is regular.
● L1 = L is regular.
● L2 = LL is regular
● L3 = L(LL) is regular
● …
● Regular languages are closed under union.
● So the union of all these languages is 

regular.
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Reasoning about Infnity
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x

≠ 2x



  

Reasoning about Infnity

0.9 < 1
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Reasoning about Infnity
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Reasoning about Infnity

0.99999 <≮ 1
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Reasoning about Infnity

2 is fnite



  

Reasoning about Infnity

3 is fnite



  

Reasoning about Infnity

4 is fnite



  

Reasoning about Infnity

∞ is fnite



  

Reasoning about Infnity

∞ is fnite
^ not



  

Reasoning About the Infnite

● If a series of fnite objects all have some 
property, the “limit” of that process does 
not necessarily have that property.

● In general, it is not safe to conclude that 
some property that always holds in the 
fnite case must hold in the infnite case.
● (This is why calculus is interesting).



  

Idea: Can we directly convert an NFA for 
language L to an NFA for language L*?
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The Kleene Star

εstart    

ε

ε

Machine for L

Machine for L*

Question: Why add the 
new state out front? 
Why not just make the 

old start state 
accepting?

Question: Why add the 
new state out front? 
Why not just make the 

old start state 
accepting?



  

Closure Properties

● Theorem: If L₁ and L₂ are regular 
languages over an alphabet Σ, then so are 
the following languages:
● L₁ 
● L₁ ∪ L₂ 
● L₁ ∩ L₂ 
● L₁L₂
● L₁*

● These properties are called closure 
properties of the regular languages.



  

Next Time

● Regular Expressions
● Building languages from the ground up!

● Thompson’s Algorithm
● A UNIX Programmer in Theoryland.

● Kleene’s Theorem
● From machines to programs!



  

Appendix: Extended Subset 
Construction Example
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